Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(7): e23554, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588175

RESUMO

Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-ß, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.


Assuntos
Osso e Ossos , Osteoclastos , Osteoclastos/metabolismo , Osso e Ossos/metabolismo , Remodelação Óssea , Transdução de Sinais , Sistema Imunitário , Ligante RANK/metabolismo
2.
J Cell Physiol ; 238(6): 1193-1206, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120830

RESUMO

White adipose tissue (WAT) is not only an energy storage reservoir that is critical in energy homeostasis but is also a highly metabolically active endocrine organ. WAT can secrete a variety of adipocytokines, including leptin (LEP), adiponectin (APN), resistin, visfatin, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and osteopontin (OPN). It can also synthesize and secrete exosomes, which enhance intercellular communication and participate in various physiological processes in the body. It can also synthesize and secrete exosomes to enhance intercellular communication and participate in a variety of physiological processes in the body. The skeleton is an important organ for protecting internal organs. It forms the scaffolding of the body and gives the body its basic form. It drives muscle contraction to produce movement under the regulation of the nervous system. It is also an important hematopoietic organ; and it is regulated by the cytokines secreted by WAT. As research related to the release of adipocytokines from WAT to affect the skeleton continues to progress, an inextricable link between bone lipid regulation has been identified. In this paper, we review the literature to summarize the structure, function and metabolism of WAT, elaborate the specific molecular mechanisms by which WAT-secreted hormones, cytokines and exosomes regulate skeletal cells, provide a theoretical basis for the in-depth study of WAT cross-organ regulation of bone, and provide new ideas for finding new adipose-secreted targeting factors for the treatment of skeletal diseases.


Assuntos
Tecido Adiposo Branco , Osso e Ossos , Adipocinas/metabolismo , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Citocinas/metabolismo , Homeostase , Leptina/metabolismo , Osso e Ossos/metabolismo
3.
Front Endocrinol (Lausanne) ; 14: 1287972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239981

RESUMO

Bone and skeletal muscle work in coordination to maintain the function of the musculoskeletal system, in which skeletal muscle contraction drives the movement of the bone lever system while bone provides insert sites for skeletal muscle through the bone-muscle junction. Existing evidence suggests that factors secreted by skeletal muscle and bone mediate the interaction between the two tissues. Herein, we focused on the relationship between skeletal muscle and bone and the underlying mechanism of the interaction. Exercise can promote bone strength and secrete osteocalcin and insulin-like growth factor I into the blood, thus improving muscle quality. In addition, exercise can also promote myostatin, interleukin-6, Irisin, and apelin in muscles to enter the blood so that they can act on bones to maintain the balance between bone absorption and bone formation. There is a special regulatory axis interleukin-6/osteocalcin between myokines and osteokines, which is mainly influenced by exercise. Therefore, we pay attention to the important factors in the bone-muscle intersection that are affected by exercise, which were found or their functions were expanded, which strengthened the connection between organs of the whole body, highlighting the importance of exercise and contributing to the diagnosis, prevention, and treatment of osteoporosis and sarcopenia in the clinic.


Assuntos
Interleucina-6 , Músculo Esquelético , Osso e Ossos/metabolismo , Exercício Físico/fisiologia , Interleucina-6/metabolismo , Músculo Esquelético/metabolismo , Osteocalcina/metabolismo
4.
Front Endocrinol (Lausanne) ; 13: 915937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093084

RESUMO

In competitive sports, the training load is close to the human physiological limit, which will inevitably lead to exercise-induced fatigue. If fatigue cannot be recovered in time, it will eventually lead to excessive training and affect sport performance. Therefore, fatigue has become an important part of the physical function assessment for athletes. This paper will review animal models of long-term exercise-induced fatigue, modeling schemes of mice under treadmill and swimming training, phenotypes of long-term exercise-induced fatigue (e.g., nervous system damage, myocardial cell damage, bone mineral density changes, and skeletal muscle damage), and fatigue indicators. The relationship between physiological indicators and biomarkers and long-term exercise-induced fatigue is analyzed to promote exercise-induced fatigue monitoring. This paper attempts to provide a reference for the selection of animal models of long-term exercise-induced fatigue and provide a new theoretical basis for medical supervision and recovery of exercise-induced fatigue.


Assuntos
Atletas , Fadiga , Animais , Densidade Óssea , Modelos Animais de Doenças , Fadiga/etiologia , Humanos , Camundongos , Natação
5.
Front Bioeng Biotechnol ; 10: 953916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935491

RESUMO

Exosomes are membranous lipid vesicles fused with intracellular multicellular bodies that are released into the extracellular environment. They contain bioactive substances, including proteins, RNAs, lipids, and cytokine receptors. Exosomes in the skeletal microenvironment are derived from a variety of cells such as bone marrow mesenchymal stem cells (BMSCs), osteoblasts, osteoclasts, and osteocytes. Their biological function is key in paracrine or endocrine signaling. Exosomes play a role in bone remodeling by regulating cell proliferation and differentiation. Genetic engineering technology combined with exosome-based drug delivery can therapy bone metabolic diseases. In this review, we summarized the pathways of exosomes derived from different skeletal cells (i.e., BMSCs, osteoblasts, osteocytes, and osteoclasts) regulate the skeletal microenvironment through proteins, mRNAs, and non-coding RNAs. By exploring the role of exosomes in the skeletal microenvironment, we provide a theoretical basis for the clinical treatment of bone-related metabolic diseases, which may lay the foundation to improve bone tumor microenvironments, alleviate drug resistance in patients.

6.
Front Cell Dev Biol ; 9: 741183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631718

RESUMO

Exosomes are membranous lipid vesicles fused with intracellular multicellular bodies and then released into the extracellular environment. They contain various bioactive substances, including proteins, mRNA, miRNAs, lncRNAs, circRNAs, lipids, transcription factors, and cytokine receptors. Under certain conditions, bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts, chondrocytes, adipocytes, and biological functions. This study provides a theoretical basis for the application of exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) in osteology, exploring different sources of exosomes to improve bone microenvironment and resist bone metastasis. We also provided new ideas for the prevention and rehabilitation of human diseases by exosomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...